новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

КРИТИЧЕСКИЕ ЯВЛЕНИЯ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КРИТИЧЕСКИЕ ЯВЛЕНИЯ, особенности в поведении вещества, наблюдаемые вблизи критич. точек однокомпонентных систем и растворов (см. Критическое состояние), а также вблизи точек фазовых переходов II рода. Важнейшие критические явления в окрестности критич. точки равновесия жидкость - газ: увеличение сжимаемости в-ва, аномально большое поглощение звука, резкое увеличение рассеяния света (т. наз. критич. опалесценция), рентгеновских лучей, потоков нейтронов. изменение характера броуновского движения; аномалии вязкости, теплопроводности и др. В окрестности Кюри точки у ферромагнетиков и сегнетоэлектриков наблюдается аномальное возрастание магн. восприимчивости или диэлектрич. проницаемости соотв., вблизи критич. точек растворов - замедление взаимной диффузии компонентов. критические явления могут наблюдаться и вблизи точек т. наз. слабых фазовых переходов I рода, где скачки энтропии и плотности очень малы и переход, т. обр., близок к фазовому переходу II рода, например при переходе изотропной жидкости в нематич. жидкий кристалл. Во всех случаях при критические явления наблюдается аномалия теплоемкости. критические явления оказывают влияние и на кинетику хим. процессов вблизи критич. значений параметров состояния. В частности, скорость гетерог. реакций в диффузионной области протекания перестает зависеть от состава системы. Скорость бимолекулярных реакций с малой энергией активации вблизи критич. точки резко замедляется. Эксперим. исследование критические явления сильно затруднено из-за того, что вблизи критич. состояния система чрезвычайно чувствительна к внеш. воздействиям. Характер критич. аномалий искажается в результате гравитации (гидростатич. градиент давления приводит к заметной неоднородности плотности вблизи критич. точки жидкости), температурной неоднородности (тепловое равновесие не устанавливается в течение мн. часов или даже суток), наличия примесей. Совр. флуктуац. теория критические явления рассматривает их с единой точки зрения как кооперативные явления, обусловленные свойствами всей совокупности частиц. У всех объектов существуют физ. свойства, температурная зависимость которых вблизи точек переходов разл. природы одинакова или почти одинакова. Это - т. наз. параметры порядка, флуктуации которых вблизи точек переходов аномально растут. Для чистых жидкостей таким параметром является плотность; для растворов, в т. ч. полимерных и мицеллярных, - состав; для ферромагнетиков и сегнетоэлектриков - намагниченность и поляризация соотв.; для смектич. жидких кристаллов - амплитуда волны плотности и т. п. Предполагается, что тсрмодинамич. ф-ции вещества вблизи его критич. точки одинаковым образом зависят от температуры и параметра порядка при соответствующем выборе термодинамич. переменных (т. наз. изоморфность критические явления). Эксперим. переменные могут не совпадать с изоморфными, тогда характер критич. аномалий меняется. Гипотеза изоморфности критические явления позволяет описать свойства сложного объекта вблизи критич. точки, например многокомпонентного раствора, на языке простой ("идеальной") системы. Для такой системы зависимости разных свойств от величины t=(Т-Tк)//Tк, где Т - температура, Тк - критич. температура, и от параметра порядка имеют вид степенных ф-ций, причем показатели степени, определяемые экспериментально, одинаковы или очень близки для разл. систем; они наз. критич. показателями. Классич. теория критические явления восходит к Дж. Гиббсу и Я. Вандер-Ваальсу; в наиб. общей формулировке термодинамич. потенциалы предполагаются аналит. ф-циями и м. б. представлены разложением в ряд по степеням параметра порядка (разложение Ландау). Флуктуации предполагаются малыми, поэтому их учет не меняет характера критич. аномалий термодинамич. и кинетич. величин, возникают лишь малые поправки. Для некоторых объектов, например сверхпроводников и сегнетоэлектриков, в экспериментально достижимой окрестности фазового перехода критические явления хорошо описываются классич. теорией, т. е. флуктуации параметра порядка не оказывают существ. влияния на характер критич. аномалий. Это связано с особенностями межмол. взаимодействия. Если оно проявляется на расстояниях, существенно превышающих среднее расстояние между частицами, то установившееся в веществе среднее силовое поле почти не искажается флуктуациями и критические явления обнаруживаются лишь вблизи точки перехода. Если же силы взаимод. достаточно быстро убывают с расстоянием, флуктуации играют значит. роль, критические явления возникают задолго до подхода к критич. точке и не описываются классич. теорией. критические явления носят классич., не-флуктуационный характер и в т. наз. трикритич. точке на диаграмме состояния, где линия фазовых переходов I рода переходит в линию фазовых переходов II рода, например в трикритич. точке l-переходов в растворе 3Не—4Не. Флуктуац. теория критические явления базируется на гипотезе масштабной инвариантности (скейлинг), осн. положение которой состоит в том, что флуктуации параметра порядка (плотности, концентрации, намагниченности и т. п.) вблизи критич. точки велики. Радиус корреляции rс (величина, близкая по смыслу к среднему размеру флуктуации, единств. характерный масштаб в системе) значительно превосходит среднее расстояние между частицами. Можно сказать, что вещество в критич. области по своей структуре - это "газ", состоящий из капель, размер которых rс растет по мере приближения к критич. точке. В критич. точке радиус корреляции становится бесконечно большим. Это означает, что любая часть вещества в точке перехода "чувствует" изменения, произошедшие в остальных частях. Наоборот, вдали от критич. точки флуктуации статистически независимы и случайные изменения состояния в данной части не сказываются на свойствах системы в др. ее частях. Наглядным примером может служить критич. опалесценция. В случае рассеяния на независимых флуктуациях (т. наз. рэлеевское рассеяние) интенсивность рассеянного света I~1/l4 (l - длина волны света) и имеет симметричное распределение в пространстве; при критич. опалесценции I~1/l2 и имеет распределение, вытянутое в направлении падающего света. Гипотеза масштабной инвариантности устанавливает универсальные соотношения между критич. показателями, так что лишь два показателя остаются независимыми. Эти соотношения позволяют определить уравнение состояния и вычислить затем разл. термодинамич. величины по сравнительно небольшому эксперим. материалу. наиб. распространение получила т. наз. линейная модель ур-ния состояния, содержащая лишь два параметра, определяемых экспериментально, помимо критич. параметров вещества. Численные значения критич. показателей зависят от размерности пространства и от характера симметрии параметра порядка. Напр., если параметр порядка - скаляр (плотность, концентрация) или одномерный вектор (намагниченность анизотропного ферромагнетика), то критические явления в таких системах характеризуются одинаковыми критич. показателями, т.е. входят в один и тот же класс универсальности. Гипотеза масштабной инвариантности обобщается и на кинетич. явления (динамич. скейлинг). Предполагается, что вблизи критич. точки кроме характерного размера rс существует также характерное время tс - время релаксации критич. флуктуации, растущее по мере приближения к точке перехода. На расстояниях порядка rс tс=rc2/D, где D - кинетич. характеристика, имеющая разл. смысл для фазовых переходов разной природы. Так, для критич. точки жидкость - газ D - коэф. температуропроводности, в растворах D - коэф. взаимной диффузии компонентов. Для всех жидкостей и растворов D определяется по ф-ле Стокса-Эйнштейна: D=kТ/6phrc, где k - постоянная Больцмана, h - сдвиговая вязкость. Отсюда следует, что в критич. точке (rс::) D:0, а tс::. С уменьшением коэф. D и ростом tс связано аномальное сужение полосы мол. рассеяния света и аномальное поглощение звука вблизи критич. точек жидкостей и растворов. Изменение температуры в звуковой волне приводит к отклонению ф-ции распределения флуктуации от ее равновесного значения. Релаксация ф-ции распределения к равновесному значению происходит по диффузионному механизму, т. е. является диссипативным процессом. При частоте звука, сравнимой с обратным временем релаксации tc-1, звук практически полностью затухает, пройдя расстояние, равное всего неск. длинам волн. Кинетич. масштабная инвариантность объясняет также экспериментально наблюдаемое бесконечное увеличение коэф. теплопроводности и сдвиговой вязкости в критич. точках жидкостей. Лит.: Фишер М., Природа критического состояния, пер. с англ., М., 1986; МаШ., Современная теория критических явлений, пер. с англ., М., 1980; Паташинский А.З., Покровский В.Л., Флуктуационная теория фазовых переходов, 2 изд., М., 1982; Анисимов М.А., Критические явления в жидкостях и жидких кристаллах, М., 1987. М. А. Анисимов.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIV
Контактная информация