новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Столкновений теория


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Столкновений теория, простейший вариант теории газофазных химических реакций, трактующий скорость р-дии как ф-цию частоты столкновений молекул, их концентраций. некоторой пороговой энергии и температуры. Предложена У. Мак-Льюисом, М. Поляни, К. Герцфельдом в 20-х гг. 20 в.

Мол. столкновения рассматриваются как столкновения бесструктурных частиц, имеющих точно установленную скорость, а часто и находящихся в строго определенных квантовых состояниях. Никакие внеш. силы, за исключением сил межмол. взаимодействия, не учитываются. Столкновения делят на упругие и неупругие. При упругом столкновении направления движения сталкивающихся частиц изменяются, а их суммарная кинетич. энергия сохраняется, перераспределяясь между частицами. В результате неупругого столкновения претерпевает изменение внутр. энергия сталкивающихся частиц и, следовательно, их полная кинетич. энергия. При этом изменяется квантовое состояние одной из сталкивающихся частиц либо обеих. Вероятность перехода системы из двух сталкивающихся частиц в результате их упругого или неупругого соударения в определенное конечное состояние характеризуется сечением соударения (сечением рассеяния) s, или эффективным сечением. Последнее имеет размерность площади и равно отношению частоты соударений Z (число столкновений за 1 с в 1 см3) к плотности потока рассеиваемых частиц, т.е. к числу частиц, проходящих в единицу времени через единичную площадку, нормальную к их скорости: ("-концентрация частиц, -средняя скорость). Средняя скорость частиц м. б. определена, если известна ф-ция распределения частиц по скоростям. Для идеального газа в состоянии статистич. равновесия эта ф-ция представляет собой распределение Максвелла (см. Статистическая термодинамика).

Упругие столкновения молекул определяют явления переноса в газах: диффузию (перенос частиц), вязкость (перенос импульса), теплопроводность (перенос энергии). Соответствующие коэф. переноса определяются эффективными сечениями упругого рассеяния частиц. Сечение рассеяния атомов или молекул на большие углы наз. газокинетич. сечением; оно составляет по порядку величины 10-15 см2. Подвижность ионов в газовой фазе также связана с сечением рассеяния иона на атоме или молекуле (см. Ионы в газах). Неупругие столкновения могут приводить к разл. процессам: переходам между электронными, колебат. или вращат. состояниями молекул, ионизации, диссоциации, разл. хим. реакциям между частицами и др.; каждый из этих процессов характеризуется соответствующим сечением. Напр., столкновение двух молекул А и В, приводящее к хим. реакции с образованием продуктов С и D, рассматривают с учетом квантовых состояний исходных молекул (обозначаются индексами i, j) и продуктов (индексы k, l) (см. Динамика элементарного акта). Процесс характеризуют детальным сечением взаимодействия skl/ij, пропорциональным потоку частиц продуктов Ck, Dl, в заданном направлении; величина сечения взаимод. зависит от кинетич. энергии взаимод. и начальных квантовых состояний частиц Аi и Вj и м. б. измерена, например, с помощью молекулярных пучков метода.

Столкновений теория рассматривает хим. реакцию, по существу, как результат столкновения молекул реагентов, в соответствии с представлениями кинетич. теории газов, осн. допущения которой сводятся к следующему: 1) молекулы-твердые бесструктурные сферы диаметром d; 2) в промежутках между столкновениями молекулы не взаимод. друг с другом; 3) время столкновения (контакта) пренебрежимо мало по сравнению со средним временем своб. пробега молекул между столкновениями (см. Газы). Число столкновений ZAB молекул А и В в единицу времени в единице объема равно:


где nА, nв- концентрации молекул А и В (число соответствующих молекул в единице объема), dАВ = 1/2(dA + dB)-средний диаметр сталкивающихся молекул, m = mA mB/(mA + + mB)-приведенная масса молекул А и В, R-газовая постоянная, Т-абс. температура.

Согласно теории столкновений, не все столкновения приводят к химической реакции. Энергией, вызывающей реакцию, является та часть полной кинетической энергии двух сталкивающихся молекул, которая соответствует компоненте относительной скорости двух молекул, направленной вдоль линии, соединяющей их центры в момент столкновения. Для протекания реакции кинетическая энергия относительного движения А и В при столкновении должна превышать некоторое критическое значение Екр (пороговая энергия). Доля молекул с энергией, превышающей Екр, определяется в основном множителем (Екр/RT+ 1) ехр (-Екр/RT). Т. обр., скорость реакции iv представляет собой произведение частоты столкновений ZAB на долю молекул, имеющих энергию, большую или равную Екр:


где k0- константа скорости реакции. Из (1) и (2) следует:


Температурная зависимость предэкспоненц. множителя приводит к нарушению аррениусовской температурной зависимости константы скорости (см. Аррениуса уравнение). Однако это нарушение незначительно, особенно при Екр RT.

Результаты расчетов констант скорости реакций по выражению (3), как правило, значительно превышают измеренные значения, в связи с чем в выражение для константы скорости k вводят т. наз. стерич. фактор (вероятностный множитель) S 1:


По существу, стерич. фактор-мера различия экспериментального и рассчитываемого по столкновений теория значений константы скорости; он составляет от 1 до 10-5 для большинства реакций.

В случае мономолекулярных превращений теории столкновений изучает в осн. закономерности перераспределения энергии изолир. молекулы по степеням свободы. Для бимолекулярных реакций теория столкновений не позволяет определить константу скорости, т.к. нельзя рассчитать пороговую энергию и стерический фактор. Тем не менее теория столкновений теория сыграла важную роль в развитии представлений химической кинетики. В частности, она послужила базой при разработке активированного комплекса теории.

Осн. постулат этой теории состоит в том, что реакция характеризуется переходом начальной конфигурации атомов при непрерывном изменении координат соответствующих ядер и электронов в конечную конфигурацию через некоторую промежут. конфигурацию, которая является критич. для данной реакции и соответствует высшей точке наиб. выгодного пути реакции на поверхности потенциальной энергии. Результаты расчетов констант скорости реакций по теории активир. комплекса совпадают со значениями, получаемыми по теории столкновений, лишь для реакций между атомами и простейшими молекулами (напр., I2, Н2). Для реакций более сложных молекул столкновений теория неприменима, т.к. рассматривает сталкивающиеся молекулы как бесструктурные частицы, не имеющие внутр. степеней свободы.

Понятия теории столкновений используются в теории реакций, скорость которых определяется диффузионным сближением реагирующих частиц (см. Диффузионно-контролируемые реакции, Реакции в растворах).

Лит. см. при ст. Кинетика химическая. © А. А. Овсянников.





выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIV
Контактная информация