новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

ЭКСТРАГИРОВАНИЕ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ЭКСТРАГИРОВАНИЕ (от лат. extraho - вытягиваю, извлекаю), перевод одного или неск. компонентов из твердого пористого тела в жидкую фазу с помощью избират. растворителя (экстрагента); один из массообменных процессов хим. технологии. Наряду с термином "экстрагирование" часто применяют термин "выщелачивание" (в англоязычной литературе "leaching"), назв. которого происходит от слова "щелочь". Действительно, в некоторых технол. процессах извлечения раствор содержит щелочь; однако во мн. иных аналогичных процессах, также наз. "выщелачиванием", щелочь вообще не используется. Поэтому термин "экстрагирование", под которым понимают извлечение в системе твердое тело - жидкость, следует считать более общим и предпочтительным.

экстрагирование существенно отличается от экстракции жидкостной. которая протекает в гетерог. системе жидкость - жидкость. При экстрагирование размеры твердых тел задаются предшествующими операциями (измельчение).

Различают два принципиально разных способа извлечения: экстрагирование растворенного вещества и экстрагирование твердого вещества. В случае экстрагирование растворенного в-ва пористый объем твердого тела заполнен раствором целевого компонента, который при извлечении диффундирует за пределы пористого тела в экстрагент. Классич. пример - извлечение сахара из свекловичной стружки при ее обработке горячей водой. экстрагирование твердого вещества происходит, если целевой компонент, заполняющий пористый объем твердого тела, находится в твердом состоянии. При обработке твердого тела экстрагентом диффузионной стадии предшествует стадия растворения целевого компонента. В обоих случаях пористый инертный скелет либо остается в неизмененном виде, либо подвергается определенным изменениям.

К осн. стадиям экстрагирование относят: 1) подготовку сырья и экстрагента (очистка и измельчение сырья, нагревание растворителя); 2) непосредственное контактирование твердой и жидкой фаз в аппарате, наз. экстрактором; 3) разделение системы твердая фаза - раствор (отстаивание, фильтрование. центрифугирование).

Пром. экстрагенты должны обладать высокой избирательностью, легко регенерироваться и быть сравнительно дешевыми. Таким требованиям отвечают вода, этанол. бензин. бензол. СС14 ацетон, растворы кислот, щелочей и солей.

На скорость и механизм экстрагирование существенно влияет структура твердых пористых тел, особенности строения которых определяются их природой и технол. обработкой на стадиях, предшествующих экстрагирование Такие тела могут обладать изотропной или анизотропной структурой. Изотропные тела имеют одинаковое строение во всех направлениях. Этому условию отвечают тела, состоящие из весьма малых сцементированных между собой частиц, а также тела животного или растит. происхождения, обладающие клеточным строением. При измельчении изотропных тел возможно появление анизотропии. Для анизотропных тел может наблюдаться регулярная анизотропия. Так, в случае растит. объектов, имеющих систему капилляров, направление вдоль капилляра предпочтительно для диффузионного переноса в сравнении с направлением, перпендикулярным к капилляру. При нерегулярной анизотропии тело можно рассматривать как совокупность емкостей, отделенных одна от другой непроницаемыми перегородками. Особенно неблагоприятно для экстрагирование существование замкнутых областей, изолирующих заключенную в них жидкость от экстрагента.

В соответствии со вторым началом термодинамики при взаи-мод. твердой и жидкой фаз их состояние изменяется в направлении достижения равновесия, которое характеризуется равенством хим. потенциалов извлекаемого вещества в объеме твердого тела и в осн. массе экстрагента. При извлечении растворенного вещества это равносильно равенству его концентраций в обеих фазах; условие нарушается, если целевой компонент адсорбируется твердой фазой, тогда равновесие определяется изотермой адсорбции (см. Адсорбция). При извлечении твердого вещества равновесие обусловлено растворимостью целевого компонента, находящегося в контакте с экстрагентом; при полном извлечении твердого компонента его концентрации в осн. массе раствора и в пористом объеме выравниваются.

Кинетически экстрагирование подчиняется законам массообмена. конвективной и мол. диффузии (см. Диффузия), а также законам переноса извлекаемого вещества из твердой фазы в жидкую (см. Переноса процессы). Движущая сила переноса целевого компонента - разность его хим. потенциалов в фазах. На практике для упрощения связи между скоростью процесса и составом материальных потоков движущую силу экстрагирование выражают через переменный во времени градиент концентраций извлекаемого вещества в фазах.

Массообмен при извлечении растворенного вещества. Концентрационное поле в объеме сферич. пористой частицы радиусом R (наиб. распространенный случай) с изотропной структурой м. б. описано дифференц. ур-нием диффузии в сферич. координатах:

где с - концентрация вещества, растворенного в пористом объеме твердого тела (целевого компонента); t - время; D - коэф. диффузии вещества в порах частицы; r - радиальная координата (0 r R).

Диффундирующий из глубины пористого тела целевой компонент достигает его границ и переходит в экстрагент. Этот процесс выражается ур-нием:

где К - коэф. массоотдачи; c1 - соотв. концентрация вещества на пов-сти частицы и текущая концентрация вещества в объеме экстрагента. Вводя безразмерные параметры j= r/R и Bi = KR/D, преобразуем ур-ние (2) к виду:

Из ур-ния (3) становится ясным физ. смысл параметра Bi (диффузионное число Био; см. Подобия теория). При Bi параметр , т. е. концентрация вещества на пов-сти частицы равна его концентрации в растворе. Такие условия отвечают внутридиффузионному режиму (мол. диффузия), при котором экстракц. процесс протекает наиб. интенсивно. При Bi 1 производная мала и с = const; соответствующий режим, наз. внешнедиффузионным (конвективная диффузия), достигается увеличением скорости обтекания твердых частиц жидкостью. Подбирая определенные условия, для обеспечения макс. интенсивности экстрагирование можно перевести внешнедиффузионный режим во внутридиффузионный.

Систему ур-ний (1) и (2) необходимо решать совместно с ур-нием материального баланса, устанавливающим зависимость между с и c1. Эта зависимость определяется схемой взаимод. фаз при экстрагирование (прямоток, противоток). Для прямоточного процесса:

где V и W - соотв. объем всех пор твердого тела, содержащих раствор, и экстрагента, поступающего в единицу времени в экстрактор; с0 - начальная концентрация целевого компонента в порах; сн - начальная концентрация целевого компонента в экстрагенте; - осредненная (к моменту времени t)концентрация целевого компонента в пористом объеме. Последняя составляет:

Для противоточного процесса:

где ск - конечная концентрация целевого компонента в экстрагенте на выходе из экстрактора.

Система ур-ний (4) и (5) имеет решение:

где = Dt/R2, = V/W; t = l/v (l - длина аппарата, v - скорость перемещения твердой фазы); mn - корни характеристич. ур-ния ; ст = сн при (прямоток) и ст= ск при (противоток).

Массообмен при извлечении твердого вещества. Возможны разл. варианты распределения твердого целевого компонента по объему частицы; во мн. случаях наблюдается равномерное распределение. Вследствие растворения вещества и диффузии его за пределы частицы область, содержащая твердый целевой компонент, при экстрагирование систематически сокращается. Процесс описывается ур-нием (1) при краевых условиях: и где r0 - радиус сферы, в которой целевой

компонент сохраняется в твердом виде; cs - концентрация насыщения раствора целевым компонентом.

Вместо решения задачи с подвижной границей раздела фаз можно использовать также приближенное ур-ние:

где М - масса твердого целевого компонента в объеме частицы.

Рассматривая медленный процесс извлечения твердого вещества как квазистационарный, т. е. такой, при котором в каждый момент времени "успевает" установиться стационарное распределение концентраций в виде [(сs - с)/(сsc1)] = = [(1 - rо/r)/(1 - rо/R)], находят:

где Из ур-ния (8) определяют время tэ, извлечения всего вещества из частицы радиусом R:

Более общую задачу непрерывного экстрагирование (прямоток, противоток) решают, используя ур-ния материального баланса (4) и (5).

Аппаратурное оформление процесса

По взаимному направлению движения твердой фазы и экстрагента экстракторы подразделяют на прямоточные и противоточные, по режиму работы - на аппараты периодического, полунепрерывного и непрерывного действия.

Экстракторы периодического и полунепрерывного действия. наиб. распространены камерные аппараты (реакторы) с мех., пневматич. или пневмомех. перемешиванием, а также т. наз. настойные чаны с неподвижным слоем твердых частиц с циркуляцией (перколяторы) и без циркуляции экстрагента. Аппараты для экстрагирование в плотном слое обычно располагаются вертикально и имеют комбинир. форму: в осн. части цилиндрическую, с одного или обоих концов - форму усеченного конуса (рис. 1, а). На решетку сверху загружается слой твердого материала, через который сверху вниз протекает экстрагент; для выгрузки твердого остатка служит откидное днище.

Рис. 1. Экстракторы периодического действия: а - единичный аппарата; б -батарея аппаратов (I-V); 1 - корпус; 2 - ложное днище (решетка); 3 - откидное днище; 4 - штуцер для ввода свежего экстрагента; 5 - штуцер для отвода концентрированного р-ра; 6 - насос.

Последоват. соединение 4-16 таких аппаратов в батарею (рис. 1, б)позволяет перейти к полунепрерывной противоточ-ной схеме. Благодаря замкнутой системе коммуникаций удается периодически отключать от циркуля ц. системы один из аппаратов, освобождать его от полностью истощенного материала и заполнять свежим. Далее этот аппарат снова включают в систему циркуляции и подают в него наиб. обогащенный экстрагент, прошедший через все остальные аппараты; затем отключают след, аппарат, в который до этого поступал чистый экстрагент, и т.д. С увеличением числа аппаратов процесс приближается к непрерывному.

Гл. недостатки описанных экстракторов, которые продолжают широко применяться в хим. произ-вах: большие затраты ручного труда при их эксплуатации, значит. потери экстрагируемого вещества при выгрузке, высокая металлоемкость, трудность регулирования работы. Экстракторы периодич. действия используют в произ-ве небольших партий фармацевтич. препаратов, настоев, морсов и др. Экстракторы полунепрерывного действия (батарея аппаратов) малоэффективны, громоздки и сложны в обслуживании.

Экстракторы непрерывного действия. К осн. экстракторам относятся шнековые и ленточные аппараты. Шнековы и экстрактор (рис. 2) представляет собой трехколонный аппарат с транспортирующим органом шнекового типа. Твердая фаза последовательно перемещается через загрузочную, горизонтальную и экстракц. колонны навстречу движущемуся экстрагенту. В верх. части загрузочной колонны имеется сито для отделения экстракта от твердой фазы. Достоинства аппарата - малая металлоемкость и небольшая занимаемая площадь. Недостатки обусловлены конструкцией шнека, вокруг вала которого закручивается твердый материал; поэтому иногда шнек заменяют цепным транспортирующим органом.

Ленточный экстрактор (рис. 3) имеет стальной корпус, внутри которого расположен транспортер с перфорир. лентой. Подаваемый в аппарат материал движется слоем высотой 0,6-1,2 м по верх. ветви транспортера.

Рис. 2. Шнековый экстрактор непрерывного действия: 1, 2, 3 - загрузочная, горизонтальная и экстракц. колонны; 4-6 - шнеки; 7 -разделит. сито.

Для равномерного распределения экстрагента по пов-сти материала над слоем размещены распылители. Пройдя через слой материала, раствор поступает в воронку, откуда насосом подается в смежную зону, которая расположена в направлении, противоположном движению ленты. Распространены также роторные аппараты карусельного типа, реализующие тот же принцип действия.

Рис. 3. Ленточный экстрактор непрерывного действия: 1 - корпус; 2 - бункер; 3 - ленточный транспортер; 4 - воронка; 5 - насосы.

Преимущества экстракторов непрерывного действия, применяемых в многотоннажных произ-вах, перед периодически функционирующими аппаратами: более высокий коэф. массоотдачи от пов-сти твердых частиц к экстрагенту; полное исключение ручного труда при обслуживании; возможность создания экстрактов большой единичной мощности и автоматизации экстрагирование

Интенсификация процесса

По сравнению с растворением экстрагирование протекает медленнее. Для его интенсификации целесообразны след. способы:

1. Повышение температуры экстрагента. Приводит к увеличению коэф. диффузии, что ускоряет извлечение растворенного и твердого в-в; в последнем случае возрастает и движущая сила процесса csc1 [см. ур-ние (8)]. При повышении температуры снижается также вязкость экстрагента, вследствие чего уменьшаются потери напора на прокачку р-рителя через слои извлекаемого вещества.

2. Повышение относит. скорости движения фаз. Способствует увеличению коэф. массоотдачи, что сокращает время экстрагирование (если процесс не лимитируется внутр. диффузией).

3. Интенсивное перемешивание. Приводит к обновлению пов-сти контакта твердых частиц с экстрагентом (эффективно при внешнедиффузионном сопротивлении).

4. Повышение давления. Уменьшает объем воздуха, "защемленного" в пористом объеме частиц при погружении твердого в-ва в экстрагент, и, Следовательно, восстанавливает нарушенный при этом контакт внутр. пов-сти частиц с жидкостью.

5. Подвод энергии (вибрации, пульсации, ультразвуковые и инфразвуковые колебания).

Кроме того, при хим. реакциях между веществом и экстрагентом процесс можно ускорить, повышая концентрацию извлекаемого в-ва.

экстрагирование используют: а) для извлечения соед. редких металлов, урана, серы и др. из руд; б) для извлечения из пористых продуктов спекания разл. веществ (произ-во глинозема, NaF и т.д.); в) для выделения орг. соед. из растит. сырья в произ-вах сахара, растит, и эфирных масел, р-римых кофе и чая, лек. ср-в и др.; г) для образования пористых структур путем добавления и послед. извлечения растворимого вещества после фиксации структуры (напр., в произ-ве пористых пластмасс, применяемых как изоляц. материал).

Лит.: Аксельруд Г.А., Лысянский В.М., Экстрагирование. Система твердое тело - жидкость, Л., 1974; Романков П. Г., Курочкина М. И., Экстрагирование из твердых материалов, Л., 1983; Романков П. Г., Фролов В. Ф., Массообменные процессы химической технологии, Л., 1990, с. 117-48.

Г. А. Аксельруд.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIII
Контактная информация