новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Волокна химические


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Волокна химические формуют из органических полимеров. Различают искусственные волокна. которые получают из природных полимеров, главным образом целлюлозы и ее эфиров (например, вискозные волокна, ацетатные волокна), и синтетические волокна, получаемые из синтетических полимеров (например, полиамидные волокна, полиакрилонитрильные волокна). К химическим иногда относят также волокна из неорганических веществ, например стеклянное волокно, борное волокно.

В промышленности химические волокна вырабатывают в виде: 1) штапельных (резаных) волокон длиной 35-120 мм; 2) жгутов и жгутиков (линейная плотность соответственно 30-80 и 2-10 г/м); 3) комплексных нитей (состоят из многих тонких элементарных нитей; в зависимости от линейной плотности и механических свойств подразделяются на текстильные и технические); 4) мононитей (диаметр 0,03-1,5 мм). Свойства химических волокон и нитей приведены в таблицах 1-4.

Важные преимущества химические волокна перед волокнами природными - широкая сырьевая база, высокая рентабельность производства и его независимость от климатических условий. Многие химические волокна обладают также лучшими механическими свойствами (прочностью, эластичностью, износостойкостью) и меньшей сминаемостью. Недостаток некоторых химические волокна, например полиакрилонитрильных, полиэфирных, - низкая гигроскопичность.

В 60-70-е гг. созданы химические волокна из полимеров со специфическими свойствами, например: термостойкие волокна(из ароматич. полиамидов. полиимидов и др.), выдерживающие длительную эксплуатацию при 200-300°С; углеродные волокна, получаемые карбонизацией химические волокна и обладающие высокой жаростойкостью (в бескислородных условиях до 2000 °С, в кислородсодержащих средах до 350-400 °С); фторволокна(из фторсодержащих карбоцепных полимеров), устойчивые в агрессивных средах, физиологически безвредные, обладающие хорошими антифрикционными и электроизоляционными свойствами. Некоторые из этих волокон характеризуются также более высокими, чем обычные химические волокна, прочностью. модулем, большей растяжимостью и др. (табл. 4).

Табл. 1.-СВОЙСТВА ШТАПЕЛЬНЫХ ВОЛОКОН ПРИ 20°С И ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТИ ВОЗДУХА 65%

* В мокром состоянии.

Табл. 2.-СВОЙСТВА ХИМИЧЕСКИХ НИТЕЙ ПРИ 20oС И ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТИ ВОЗДУХА 65%


Формование волокон и их структура. К волокнообразующим полимерам предъявляют следующие основные требования: молярная масса в пределах 15000-150000 (верхний предел лимитируется вязкостью растворов или расплавов, из которых может быть получено волокно, нижний - необходимыми механическими свойствами волокна); сравнительно узкое ММР; способность плавиться без разложения или растворяться в доступных, легко регенерируемых растворителях.

Химические волокна формуют из расплавов ( 50-500 Па*с) или растворов (конц. 5-30%, 3-80 Па*с), отфильтрованных от примесей и дегазированных. Расплав или раствор продавливают через отверстия фильеры (диаметр отверстий 50-500 мкм) в среду, в которой струйки полимера затвердевают, превращаясь в волокна.

При формовании из расплава затвердевание струек происходит вследствие их охлаждения воздухом ниже температуры плавления полимера. Этот способ используют в тех случаях, когда полимер плавится без заметного разложения, например в произ-ве волокон из полиолефинов. полиэфиров, алифатических полиамидов.

Формование из раствора применяют при получении химические волокна из полимеров, температура плавления которых лежит выше температуры их разложения или близка к ней. Волокно образуется в результате испарения летучего растворителя ("сухой" способ формования) или осаждения полимера в осадительной ванне ("мокрый" способ), иногда после прохождения струек раствора через воздушную прослойку ("сухо-мокрый" способ). Сухим способом формуют, например, ацетатные и полиакрилонитрильные волокна, мокрым - вискозные, полиакрилонитрильные, поливинилхлоридные и др., сухо-мокрым - волокна из термостойких полимеров, наиболее производителен (скорость 500-1500 м/мин, иногда до 7000 м/мин), прост и экологически безопасен способ формования из расплава, наименее производителен (скорость 5-100 м/мин) и наиболее сложен мокрый способ формования из раствора, требующий регенерации реагентов и очистки выбросов. Скорость формования по сухому способу 300-800 м/мин.

Сформованные химические волокна подвергают ориентационному вытягиванию в 3-10 раз и термообработке (релаксации) с целью повышения их прочности, а также уменьшения деформируемости и усадки в условиях эксплуатации. Оптимальная температура этих операций лежит вблизи температуры максимальной скорости кристаллизации полимера, их продолжительность определяется скоростями релаксационных процессов и кристаллизации.

Табл. 3-СОРБЦИЯ ВОДЯНЫХ ПАРОВ ХИМИЧЕСКИМИ ВОЛОКНАМИ (НИТЯМИ), ИХ НАБУХАНИЕ И СВОЙСТВА В МОКРОМ СОСТОЯНИИ ПРИ 20°С

* Волокна различных видов. ** Вискозное и медноаммиачное волокна различных видов.

Табл. 4.-ХАРАКТЕРИСТИКА НИТЕЙ И ВОЛОКОН СО СПЕЦИФИЧЕСКИМИ СВОЙСТВАМИ ПРИ 20°С И ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТИ ВОЗДУХА 65%


Сохранение прочности при ЗОСГС составляет 45-65% от ее исходного значения (после прогрева при этой температуре в течение 100 ч-50-80%). ** В ГПа.

Заключительные операции получения химические волокна или нитей включают их промывку, сушку, обработку замасливателями, антистатиками и другими текстильно-вспомогательными веществами. В число заключительных операций входит иногда и химическое модифицирование химические волокна, например: ацеталирование поливинилспиртовых волокон формальдегидом для придания им водостойкости; прививка на волокна (особенно из полимеров, макромолекулы которых содержат реакционноспособные боковые группы) различных мономеров с целью гидрофилизации химические волокна или, наоборот, их гидрофобизации и повышения устойчивости в агрессивных средах.

При получении химических волокон из нерастворимых полимеров (например, из ароматических полиимидов) для формования используют их растворимые аналоги, которые на завершающих стадиях процесса подвергают полимераналогичным превращениям (циклизации). К новым методам получения химические волокна относятся, например, фибриллирование (расщепление) одноосно ориентированных пленок, главным образом полиолефиновых, а также формование из дисперсий полимеров.

Большинство химических волокон имеет фибриллярную аморфно-кристаллическую структуру со степенью кристалличности 50-95% и углом среднемолекулярной разориентации 25-10°. В формировании механических, термических, сорбционных и других свойств волокон важную роль играет строение аморфных областей полимера (число "проходных" макромолекул, их ориентация, разнодлинность). Существенное значение имеет также микроструктура волокон (наличие пор, трещин, характер поверхности), от которой зависят их переработка и эксплуатационные свойства текстильных изделий.

Применение. Перспективы производства. Штапельные волокна и жгуты, перерабатываемые как в чистом виде, так и в смеси с другими химическими или природными волокнами, предназначены главным образом для выработки тканей, трикотажа, нетканых материалов. Жгутики, как правило, окрашенные и текстурированные, применяются в производстве ковровых изделий и искусственного меха. Из текстильных комплексных нитей вырабатывают преимущественно ткани, трикотаж, чулочно-носочные изделия. Технические комплексные нити используют в производстве изделий, эксплуатируемых при больших нагрузках (шины, РТИ, канаты и др.); мононити - в производстве рыболовных снастей, сеток, сит; фибриллированные нити - как основу ковров, тарных тканей и др. Волокна со специфическими свойствами служат армирующими наполнителями композитов, материалами для изготовления спецодежды, тепло- и электроизоляции, фильтров, изделий медицинского назначения и др.

Производство химических волокон, особенно синтетических, развивается быстрыми темпами (табл. 5).

Табл. 5.-ДИНАМИКА МИРОВОГО ПРОИЗ-ВА ХИМИЧЕСКИХ И ПРИРОДНЫХ ВОЛОКОН (млн. т)

Вид волокон
1960
1980
Прогноз
1990
2000
Химические
3,4*
14,8**
24-26
29-61
Природные
12,2
20,4
16-18
14-20

* В т.ч. 0,7 млн. т синтетических. ** В т.ч. 11,6 млн. т синтетических.

Историческая справка. Первое искусств. волокно было получено из нитрата целлюлозы (его промышленное производство было организовано во Франции в 1891). В 1896 в Германии было создано производство гидратцеллюлозных медноаммиачных волокон, в 1905 в Великобритании - вискозных. К 1918-20 относится разработка способа производства ацетатных волокон. Первое синтетическое волокно – поливинилхлоридное - было выпущено в 1932 в Германии, в 1940 там же было организовано производство поликапроамидного волокна. В 50-60-е гг. в разных странах было освоено промышленное производство полиакрилонитрильных, полиолефинов.х, полиэфирных и других синтетических волокон. Начало многотоннажного производства химические волокна в СССР относится к 1930, когда в Ленинграде была пущена фабрика вискозных волокон. Промышленное производство первого отечественного синтетического волокна (капрон) было организовано в конце 40-х гг.

Лит.: Роговин 3. А., Основы химии и технологии химических волокон, 4 изд., т. 1-2, М., 1974; Перепелкин К. Е., Физико-химические основы процессов формования химических волокон, М., 1978; Технология производства химических волокон, 3 изд., М., 1980; Химические волокна, под ред. 3. А. Роговина, К.Е. Перепелкина и др., т. 1-10, М., 1972-84; Перепелкин К. Е., Структура и свойства волокон, М., 1985. К.Е. Перепелкин.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIII
Контактная информация