Если расстояние меньше или больше этого размера всего на 10-7 , то силы отталкивания превышают силы обменного притяжения и мультиэлектроны не образуются. Интересно то, что мультиэлектрон способен создавать связи между атомами. Например, ковалентная связь представляется частным случаем ионной связи, так как мультиэлектрон в этом случае является своеобразным электронным ионом, связующим атомы по закону Кулона. Совместное же решение уравнения с потенциалом Кулона и потенциалом Юкавы (Сильное взаимодествие), позволило установить, что таким способом могут обеспечиваться все виды известных в химии молекулярных связей (Еmax=8,8эв) . Важно, что тщательное изучение вопроса о возможных противоречиях ( в теории твердого тела, квантовой механике, квантовой химии и др.) не обнаружило каких-либо нестыковок с известными законами. Таким образом, для физиков обнаруженное явление является предметом сильной головной боли, так как требует внесения существенных поправок в расчет электронных взаимодействий
Свойства Мультиэлектрона
Свойства Мультиэлектрона
Проводя исследования по сверхпроводимости, обнаружили что носителем тока является мультиэлектрон - частица, состоящая из двух и более электронов и представляющая простейшую водородоподобную систему (аналог дейтрона). Вероятный механизм возникновения мультиэлектрона в поле атома - сильное цветное взаимодействие между частицами (конфайнмент, имеющий место в очень узком интервале расстояний - 7,48 пм).
Если расстояние меньше или больше этого размера всего на 10-7 , то силы отталкивания превышают силы обменного притяжения и мультиэлектроны не образуются. Интересно то, что мультиэлектрон способен создавать связи между атомами. Например, ковалентная связь представляется частным случаем ионной связи, так как мультиэлектрон в этом случае является своеобразным электронным ионом, связующим атомы по закону Кулона. Совместное же решение уравнения с потенциалом Кулона и потенциалом Юкавы (Сильное взаимодествие), позволило установить, что таким способом могут обеспечиваться все виды известных в химии молекулярных связей (Еmax=8,8эв) . Важно, что тщательное изучение вопроса о возможных противоречиях ( в теории твердого тела, квантовой механике, квантовой химии и др.) не обнаружило каких-либо нестыковок с известными законами. Таким образом, для физиков обнаруженное явление является предметом сильной головной боли, так как требует внесения существенных поправок в расчет электронных взаимодействий
, а для химиков существенно упрощает расчеты химических связей и прогноз свойств новых соединений
.
Если расстояние меньше или больше этого размера всего на 10-7 , то силы отталкивания превышают силы обменного притяжения и мультиэлектроны не образуются. Интересно то, что мультиэлектрон способен создавать связи между атомами. Например, ковалентная связь представляется частным случаем ионной связи, так как мультиэлектрон в этом случае является своеобразным электронным ионом, связующим атомы по закону Кулона. Совместное же решение уравнения с потенциалом Кулона и потенциалом Юкавы (Сильное взаимодествие), позволило установить, что таким способом могут обеспечиваться все виды известных в химии молекулярных связей (Еmax=8,8эв) . Важно, что тщательное изучение вопроса о возможных противоречиях ( в теории твердого тела, квантовой механике, квантовой химии и др.) не обнаружило каких-либо нестыковок с известными законами. Таким образом, для физиков обнаруженное явление является предметом сильной головной боли, так как требует внесения существенных поправок в расчет электронных взаимодействий
ExpertSC, а Вы случайно не реинкарнация Expert2006 из темы про сверхпроводящий кабель?
http://www.chemport.ru/guest2/viewtopic.php?t=8455
http://www.chemport.ru/guest2/viewtopic.php?t=8455
Бог на стороне не больших батальонов, а тех, кто лучше стреляет (приписывается Вольтеру)
-
Marxist
Re: Свойства Мультиэлектрона
Давайте я Вам дам структуру соединения, а Вы мне спрогнозируете, будет ли оно обладать токсическими свойствами.ExpertSC писал(а):а для химиков существенно упрощает расчеты химических связей и прогноз свойств новых соединений.
Полный конфайнмент (пока читал чуть не перешёл в бозе-конденсат)ExpertSC писал(а):Проводя исследования по сверхпроводимости, обнаружили что носителем тока является мультиэлектрон - частица, состоящая из двух и более электронов и представляющая простейшую водородоподобную систему (аналог дейтрона). Вероятный механизм возникновения мультиэлектрона в поле атома - сильное цветное взаимодействие между частицами (конфайнмент, имеющий место в очень узком интервале расстояний - 7,48 пм).
Если расстояние меньше или больше этого размера всего на 10-7 , то силы отталкивания превышают силы обменного притяжения и мультиэлектроны не образуются. Интересно то, что мультиэлектрон способен создавать связи между атомами. Например, ковалентная связь представляется частным случаем ионной связи, так как мультиэлектрон в этом случае является своеобразным электронным ионом, связующим атомы по закону Кулона. Совместное же решение уравнения с потенциалом Кулона и потенциалом Юкавы (Сильное взаимодествие), позволило установить, что таким способом могут обеспечиваться все виды известных в химии молекулярных связей (Еmax=8,8эв) . Важно, что тщательное изучение вопроса о возможных противоречиях ( в теории твердого тела, квантовой механике, квантовой химии и др.) не обнаружило каких-либо нестыковок с известными законами. Таким образом, для физиков обнаруженное явление является предметом сильной головной боли, так как требует внесения существенных поправок в расчет электронных взаимодействий, а для химиков существенно упрощает расчеты химических связей и прогноз свойств новых соединений
.
Всего один вопрос: введение потенциала Юкавы и правда помогает решить уравнение Шрёдингера (Дирака, Клейна-Гордона ...)
Если люди не полагают, что математика проста, то только потому, что они не понимают, как на самом деле сложна жизнь (Джон фон Нейман)
Точно он! Если погуглить по нику, он уже подзасрал не один форум своим бредом.amik писал(а):ExpertSC, а Вы случайно не реинкарнация Expert2006 из темы про сверхпроводящий кабель?
http://www.chemport.ru/guest2/viewtopic.php?t=8455
Да ладно вам набрасываться... Помню как было весело, когда весь кемпорт в едином порыве опрокидывал идею... а потом решали написать статью в бредовый журнал...vano писал(а):Точно он! Если погуглить по нику, он уже подзасрал не один форум своим бредом.amik писал(а):ExpertSC, а Вы случайно не реинкарнация Expert2006 из темы про сверхпроводящий кабель?
http://www.chemport.ru/guest2/viewtopic.php?t=8455
PS Так конечно и не написали, но как было весело-то
"Bite my shiny metal ass"
Bender
Bender
Отправлен на http://community.livejournal.com/science_freaks/ в качестве экспоната.
-
eukar
discussionVitka писал(а):Отправлен на http://community.livejournal.com/science_freaks/ в качестве экспоната.
Re: Свойства Мультиэлектрона
НОВЫЕ РЕЗУЛЬТАТЫ И ЗАРУБЕЖНЫЕ ПОДТВЕРЖДЕНИЯ СВОЙСТВ МУЛЬТИЭЛЕКТРОНА
Для решения проблемы сверхпроводимости выполнено обобщение результатов, полученных в различных областях физики:
- Абдуса Салама (Нобелевский лауреат (1979), который просчитал все последствия введения цветового заряда для электрона и успешно использовал его в своей теории электроядерных взаимодействий (Pati J.C., A. Salam. Lepton number as fourth “color”// Physycal Review D, vol 10, num 1, 1974, p.275-289);
- Йотиро Намбу (Нобелевский лауреат (2008), применившего аналогию сверхпроводимости и цветового взаимодействия кварков, УФН, 1978, т.124.вып.1);
- Константина Новоселова (Нобелевский лауреат (2010), предложившего новое квантовое число для электрона - (псевдоспин) - для описания свойств двухцветных электронов в графене;
- акад.Л.Б. Окуня (высказавшего возможность существования калибровочной симметрии SU(2) частиц с большим радиусом конфайнмента, УФН, 1981,т.134.вып.1);
- проф, д.физ-мат.наук М.Б. Менского (ФИАН)(обосновавшего предположение, что лептоны (электроны) – это кварки, вырвавшиеся на свободу. См в монографии Группа путей: измерения, поля, частицы, M.: Едиториал УРСС, 2003).
-физика-теоретика, проф. А.А. Кецариса (МГТУ),(который в своем варианте единой теории взаимодействий высказал гипотезу о цветовых (черных и белых) зарядах лептонов (электронов). См. монографию АЛГЕБРАИЧЕСКИЕ ОСНОВЫ ФИЗИКИ: Пространство-время и действие как универсальные алгебры 2-е изд. Издательство. УРСС. , 2004).
МЕТОД ЭЛЕКТРОННО-КВАРКОВОЙ АНАЛОГИИ
_
_ Для решения проблемы сверхпроводимости был разработан метод электронно-кварковой аналогии (ЭКА), в основу которого были положены свойства электрон-глюонной двухцветной хромоплазмы, как частный случай трехцветной кварк-глюонной плазмы, рассматриваемой в квантовой хромодинамике.
_ Глубокая аналогия между электроном и кварками была установлена в следующем:
– наличии электронного конфайнмента, характеризующего связанное состояние частиц в парах Купера, ковалентных парах Люиса, биэлектронах Гросса, электридах Бента, плазмароне (графен), аналогичного конфайнменту между кварками в нуклонах и мезонах;
– наличии у электрона короткодействующего (в пределах комптоновской длины волны), эффективного цветового заряда, по величине такого же, как у кварков;
– наличии у электрона одновременно экранировки электрического заряда и антиэкранировки цветового заряда, таких же как у кварков;
– наличии расчетного выражения для определения константы цветового электронного взаимодействия, на основе диаграмм Фейнмана,совпадающего с расчетным выражением такой же константы для кварков;
– в одинаковом, с кварками, распределении электрических зарядов электронов в пропорции (1/3) и (2/3) между ионами и возникающей, при связанном состоянии электронов, мультичастицей в ковалентной химической связи;
– наличии линейного потенциала цветового взаимодействия между электронами в пределах дебаевского экранирования в хромоплазме (хромоплазменный электронный конденсатор), совпадающим качественно с линейным потенциалом взаимодействия кварков в нуклонах, согласно квантовой хромодинамике (КХД);
– наличие границы асимптотической свободы для цветового взаимодействия электронов, обратно пропорциональной квадрату постоянной тонкой структуры и аналогичной границе для кварков, определяемой константой КХД;
– совпадении термодинамических характеристик глюонов в электрон-глюонной плазме с их термодинамическими характеристиками в кварк-глюонной плазме;
– совпадении, по внешнему виду, Лангранжиана КХД для кварков и Лангранжиана КЭД для электронов.
ПРОВЕРКА АДЕКВАТНОСТИ МЕТОДА
_ Адекватность разработанного метода проверена на экспериментальных данных потенциалов ионизации и размеров атомов химических элементов, комплексных экспериментальных характеристик молекулярной связи (размеров молекулы, Энергии диссоциации, потенциалов ионизации и их электронных спектрах), а также на экспериментальных данных по критической температуре низкотемпературных и высокотемпературных сверхпроводников.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ
_ C помощью искусственного интеллекта (нейронные сети) обобщены результаты более 300 экспериментальных работ по свойствам различных сверхпроводников.С целью повышения точности обработки экспериментальных данных были созданы новые методы и алгоритмы диагностики на основе ассоциативных нейронов с повышенными корреляционными свойствами и способов определения степени компетентности нейронных сетей.
_ http://scipeople.ru/uploads/materials/4 ... atsky2.pdf
_ http://tage.ru/?book=disser&cat=n25&str=150&nomer=3118
_ В результате был определен вероятный размер частицы, ответственной за сверхпроводимость. В классическом понимании этот размер близок к комптоновской длине волны электрона, что соответствует релятивистскому характеру процессов.
МЕТОД ОБНАРУЖЕНИЯ ЦВЕТОВОГО ЗАРЯДА ЭЛЕКТРОНОВ
_ Действительно, одним из методов обнаружения цветового заряда электронов может быть известный метод растровой туннельной микроскопии. Создатели сканирующего туннельного микроскопа (СТМ) Герд Бинниг и Гейнрих Рорер (Нобелевская премия 1986) (УФН, 1988, т.154.вып.2) отмечали возможность СТМ фиксировать различия в электронных оболочках. Эти различия Нобелевские лауреаты предложили называть цветом атомов. Если игла кантилевера СТМ имеет на конце, например, атом с электронной оболочкой черного цвета, то её взаимодействие на поверхности кристалла с атомами одинаковых химических элементов, но с противоположными по изоспину электронами, будет также различаться. По данным Г. Биннига и Г. Рорера, такое различие будет выражаться в разном вкладе цветового заряда черных и белых электронов в туннельный ток.
_ Уже получены экспериментальные данные, косвенно подтверждающие этот метод. Приведем, в качестве примера, исследования методом СТМ общеизвестного интерфейса Cu-O в ВТСП, в котором были обнаружены цветовые различия в электронных оболочках атомов O (M. J. Lawler, K. Fujita, Jhinhwan Lee, Others. Intra-unit-cell electronic nematicity of the high-Tc copperoxide pseudogap states Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902-6000, USA. Laboratory for Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.)
_ Аналогичные результаты были получены и на структуре графена, где цветовое различие выразилось в периодической модуляции цветом электронных оболочек атомов С (V.G. Kirichenko, E.S. Melnikova THE FEATURES OF FORMATION AND SIMULATION OF GRAPHITE MONOATOMIC LAYERS Kharkov National University, High Technology Institute, Physical and Technical Department 31 Kurchatov St., Kharkov, 61108, Ukraine).
МЕХАНИЗМ СВЕРХПРОВОДИМОСТИ
_ Механизм сверхпроводимости соответствует закономерностям взаимодействия частиц в плазме и представляется следующим образом. Противоположные по цветовому заряду электроны притягиваются и образуют связанное состояние в виде новых квантовых частиц очень маленьких, комптоновских размеров. Частицы вибрируют с ленгмюровской хромоплазменной частотой, дебаевской амплитудой и одновременно рассеиваются друг на друге. Рассеивание частиц происходит под углом, поэтому периодически возникает угловой момент и, соответственно, импульсное вращение вокруг центра рассеивания. Возникающая Центробежная сила выталкивает частицы в свободное пространство кристалла, где они сосредотачиваются, образуя зону сверхпроводимости в виде канала с вигнеровской структурой. Если к мультиэлектронам, находящимся в таком канале, приложить электрическое поле, то они обеспечивают направленное движение электрического заряда без сопротивления, т.е. образуют сверхток.
Чтобы возникли мультиэлектроны, нужны специальные условия. Например, можно сделать проводник в виде слоев металла и изолятора. Тогда такой проводник становится сверхпроводником без охлаждения.
КРИТЕРИЙ СВЕРХПРОВОДИМОСТИ
_ Энергия связи мульчастицы (me) определяется балансом сил отталкивающих (кулоновского, центробежного) и притягивающего (цветового), потенциалов. Особенности механизма образования её таковы, что центробежный и цветовой короткодействующий потенциалы постоянны, а возникновение связанного состояния зависит только от величины дальнодействующего эффективного кулоновского заряда электронов.
_ Максимальное значение этого заряда, при котором еще наблюдается связанное состояние частиц, определяется из указанного баланса и равно q(me)= 1,41е, что меньше 2е. Следовательно, два электрона с общим зарядом 2е в обычных условиях никогда не образуют связанную куперовскую пару. Чтобы такая пара образовалась, необходимо экранирование заряда 2е положительным внешним зарядом, например, зарядом ионов, находящихся в узлах кристаллической решетки (применительно к интерфейсу Cu -O).
_ Установленное критическое значение эффективного заряда q(me) < 1,41е является первым условием критерия сверхпроводимости.
_ Вторым условием этого критерия является значение расстояния (d = d(кр)) между me, в вигнеровской структуре сверхпроводящего канала. Оно должно быть таким, чтобы вигнеровские орбитали перекрывались и обеспечивалась телепортация заряда от частицы к частице. Так как, размер d(кр) связан с постоянной кристаллической решетки (а), то он может быть без труда рассчитан или измерен.
_ Указанные два условия совместно образуют критерий сверхпроводимости.
_ Величина q(me)= 1,41е соответствует и численно равна значению критерия каппа(1/k) в известной теории сверхпроводимости Гинзбурга-Ландау (ГЛ). Это не случайно, так как глубину проникновения магнитного потока и размер зоны когерентности, используемые в ГЛ, можно интерпретировать как длину волны ленгмюровских колебаний и обратную величину волнового вектора me, соответственно.
_ Следовательно, известная теория ГЛ является частным случаем обобщающей мультиэлектронной теории.
_ Разработанный критерий сверхпроводимости справедлив не только для сверхпроводников с кристаллической структурой. Он может быть применен для сверхпроводящих аморфных полимерных пленок и вакуумных прослоек, в которых электрон-фононное взаимодействие заведомо отсутствует.
НОВЫЕ ЗАРУБЕЖНЫЕ ПОДТВЕРЖДЕНИЯ МЕТОДА
_ Профессор Йохан Ф. Принс предоставил авторам сведения о разработке комнатнотемпературного сверхпроводника на допированных алмазах. Sage Wise 66 (Pty) Ltd. Trading as CATHODIXX Почтовый ящик 1537, Cresta 2118, Йоханнесбург, Южная Африка веб-сайт: www.cathodixx.com ( Граница раздела алмаз – вакуум: II. Экстракция электронов из n-типа алмаза: подтверждение сверхпроводимости при комнатной температуре. Johan F Prins, Отделение физики Университета Претории (Department of Physics, University of Pretoria), Pretoria 0002, Gauteng, South Africa).
_ Новые свойства электрона являются фундаментальными свойствами и проявляются не только в сверхпроводимости.
_ Доктор наук Константин Новоселов (University of Manchester) в отзыве выразил благодарность и заинтересованность. Данная разработка объяснила открытые им новые релятивистские свойства электронов в графене, что стало важным для создания корпорацией IBM уникального транзистора c рабочей частотой 100 Ггц. Dr. Kostya Novoselov School of Physics & Astronomy Schuster Building University of Manchester Oxford Road Manchester, M13 9PL, UK www.kostya.graphene.org
_ Константин Новоселов стал Нобелевским лауреатом по физике 2010. На данном сайте имеется видеозапись выступления Константина Новоселова, где он рассказывает о своих достижениях, новом квантовом числе электрона и его обнаружении в графене.
_ Экспериментальное обнаружение мультичастицы в графене (плазмарона), выполнено в работе Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald AH, Rotenberg E. Observation of plasmarons in quasi-freestanding doped graphene. Science. 2010 May 21;328(5981):999-1002. Advanced Light Source (ALS), E. O. Lawrence Berkeley Laboratory, MS6-2100, Berkeley, CA 94720, USA.
НОВЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ АВТОРОВ
В России Сверхпроводник при комнатной температуре создан физиком В.Л. Деруновым.
_ В экспериментах применена усовершенствованная методика Айвара Живера (Нобелевский лауреат по физике (1973). С помощью нанотехнологий была синтезирована наногетероструктура диэлектрик-металл-диэлектрик, в которой создали специальные условия для возникновения мультичастиц. В результате получили металл, сверхпроводящий устойчиво в диапазоне температур 77-620 К. Для изучения и демонстрации свойств полученного сверхпроводника при комнатной температуре (293 К) на основе этих наногетероструктур были изготовлены образцы с контактами Джозефсона. Такие структуры, как известно, являются общепризнанным мировым эталоном для установления эффекта сверхпроводимости в тонких пленках толщиной от 5 до 30 нм.
_ Особое внимание в экспериментах КТСП было уделено погрешностям, связанным с возможными неконтролируемыми как поверхностными, так и внутренними структурными изменениями в образцах, при их изготовлении. Эти погрешности могли бы приводить к резким изменениям электропроводимости (закоротки) и неправильной идентификации КТСП. Поэтому для проверки и устранения указанных возмущений, методика тестовых низкофоновых измерений КТСП носила комплексный характер, с одновременной идентификацией следующих эффектов в основных и контрольных образцах:
_ – двухчастичного туннелирования при разных температурах образцов с определением критического тока;
_ – Джозефсона на переменном токе;
_ – Джозефсона на постоянном токе;
_ – поглощения СВЧ излучения;
_ – влияние магнитного поля на квантование тока в образцах и идентификация их диамагнетизма;
_ – наблюдение и регистрация структуры сверхпроводящих каналов.
_ Измерения электрических характеристик ВАХ выполнялись на стандартных характериографах, имеющих метрологическую сертификацию. Расчеты проводились с погрешностью не более 0,02% .
_ Комплексные электрические и магнитные измерения образцов подтвердили наличие в них диамагнитной проницаемости, равной -0,06, что характерно для сверхпроводимости при комнатной температуре (КТСП).
_ Экспериментальные результаты по КТСП в 2010 г. прошли положительную независимую проверку в Англии (Кембридж). Получено предложение о сотрудничестве, которое было принято специалистами НИИЭТ(Воронеж)
Для решения проблемы сверхпроводимости выполнено обобщение результатов, полученных в различных областях физики:
- Абдуса Салама (Нобелевский лауреат (1979), который просчитал все последствия введения цветового заряда для электрона и успешно использовал его в своей теории электроядерных взаимодействий (Pati J.C., A. Salam. Lepton number as fourth “color”// Physycal Review D, vol 10, num 1, 1974, p.275-289);
- Йотиро Намбу (Нобелевский лауреат (2008), применившего аналогию сверхпроводимости и цветового взаимодействия кварков, УФН, 1978, т.124.вып.1);
- Константина Новоселова (Нобелевский лауреат (2010), предложившего новое квантовое число для электрона - (псевдоспин) - для описания свойств двухцветных электронов в графене;
- акад.Л.Б. Окуня (высказавшего возможность существования калибровочной симметрии SU(2) частиц с большим радиусом конфайнмента, УФН, 1981,т.134.вып.1);
- проф, д.физ-мат.наук М.Б. Менского (ФИАН)(обосновавшего предположение, что лептоны (электроны) – это кварки, вырвавшиеся на свободу. См в монографии Группа путей: измерения, поля, частицы, M.: Едиториал УРСС, 2003).
-физика-теоретика, проф. А.А. Кецариса (МГТУ),(который в своем варианте единой теории взаимодействий высказал гипотезу о цветовых (черных и белых) зарядах лептонов (электронов). См. монографию АЛГЕБРАИЧЕСКИЕ ОСНОВЫ ФИЗИКИ: Пространство-время и действие как универсальные алгебры 2-е изд. Издательство. УРСС. , 2004).
МЕТОД ЭЛЕКТРОННО-КВАРКОВОЙ АНАЛОГИИ
_
_ Для решения проблемы сверхпроводимости был разработан метод электронно-кварковой аналогии (ЭКА), в основу которого были положены свойства электрон-глюонной двухцветной хромоплазмы, как частный случай трехцветной кварк-глюонной плазмы, рассматриваемой в квантовой хромодинамике.
_ Глубокая аналогия между электроном и кварками была установлена в следующем:
– наличии электронного конфайнмента, характеризующего связанное состояние частиц в парах Купера, ковалентных парах Люиса, биэлектронах Гросса, электридах Бента, плазмароне (графен), аналогичного конфайнменту между кварками в нуклонах и мезонах;
– наличии у электрона короткодействующего (в пределах комптоновской длины волны), эффективного цветового заряда, по величине такого же, как у кварков;
– наличии у электрона одновременно экранировки электрического заряда и антиэкранировки цветового заряда, таких же как у кварков;
– наличии расчетного выражения для определения константы цветового электронного взаимодействия, на основе диаграмм Фейнмана,совпадающего с расчетным выражением такой же константы для кварков;
– в одинаковом, с кварками, распределении электрических зарядов электронов в пропорции (1/3) и (2/3) между ионами и возникающей, при связанном состоянии электронов, мультичастицей в ковалентной химической связи;
– наличии линейного потенциала цветового взаимодействия между электронами в пределах дебаевского экранирования в хромоплазме (хромоплазменный электронный конденсатор), совпадающим качественно с линейным потенциалом взаимодействия кварков в нуклонах, согласно квантовой хромодинамике (КХД);
– наличие границы асимптотической свободы для цветового взаимодействия электронов, обратно пропорциональной квадрату постоянной тонкой структуры и аналогичной границе для кварков, определяемой константой КХД;
– совпадении термодинамических характеристик глюонов в электрон-глюонной плазме с их термодинамическими характеристиками в кварк-глюонной плазме;
– совпадении, по внешнему виду, Лангранжиана КХД для кварков и Лангранжиана КЭД для электронов.
ПРОВЕРКА АДЕКВАТНОСТИ МЕТОДА
_ Адекватность разработанного метода проверена на экспериментальных данных потенциалов ионизации и размеров атомов химических элементов, комплексных экспериментальных характеристик молекулярной связи (размеров молекулы, Энергии диссоциации, потенциалов ионизации и их электронных спектрах), а также на экспериментальных данных по критической температуре низкотемпературных и высокотемпературных сверхпроводников.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ
_ C помощью искусственного интеллекта (нейронные сети) обобщены результаты более 300 экспериментальных работ по свойствам различных сверхпроводников.С целью повышения точности обработки экспериментальных данных были созданы новые методы и алгоритмы диагностики на основе ассоциативных нейронов с повышенными корреляционными свойствами и способов определения степени компетентности нейронных сетей.
_ http://scipeople.ru/uploads/materials/4 ... atsky2.pdf
_ http://tage.ru/?book=disser&cat=n25&str=150&nomer=3118
_ В результате был определен вероятный размер частицы, ответственной за сверхпроводимость. В классическом понимании этот размер близок к комптоновской длине волны электрона, что соответствует релятивистскому характеру процессов.
МЕТОД ОБНАРУЖЕНИЯ ЦВЕТОВОГО ЗАРЯДА ЭЛЕКТРОНОВ
_ Действительно, одним из методов обнаружения цветового заряда электронов может быть известный метод растровой туннельной микроскопии. Создатели сканирующего туннельного микроскопа (СТМ) Герд Бинниг и Гейнрих Рорер (Нобелевская премия 1986) (УФН, 1988, т.154.вып.2) отмечали возможность СТМ фиксировать различия в электронных оболочках. Эти различия Нобелевские лауреаты предложили называть цветом атомов. Если игла кантилевера СТМ имеет на конце, например, атом с электронной оболочкой черного цвета, то её взаимодействие на поверхности кристалла с атомами одинаковых химических элементов, но с противоположными по изоспину электронами, будет также различаться. По данным Г. Биннига и Г. Рорера, такое различие будет выражаться в разном вкладе цветового заряда черных и белых электронов в туннельный ток.
_ Уже получены экспериментальные данные, косвенно подтверждающие этот метод. Приведем, в качестве примера, исследования методом СТМ общеизвестного интерфейса Cu-O в ВТСП, в котором были обнаружены цветовые различия в электронных оболочках атомов O (M. J. Lawler, K. Fujita, Jhinhwan Lee, Others. Intra-unit-cell electronic nematicity of the high-Tc copperoxide pseudogap states Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902-6000, USA. Laboratory for Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.)
_ Аналогичные результаты были получены и на структуре графена, где цветовое различие выразилось в периодической модуляции цветом электронных оболочек атомов С (V.G. Kirichenko, E.S. Melnikova THE FEATURES OF FORMATION AND SIMULATION OF GRAPHITE MONOATOMIC LAYERS Kharkov National University, High Technology Institute, Physical and Technical Department 31 Kurchatov St., Kharkov, 61108, Ukraine).
МЕХАНИЗМ СВЕРХПРОВОДИМОСТИ
_ Механизм сверхпроводимости соответствует закономерностям взаимодействия частиц в плазме и представляется следующим образом. Противоположные по цветовому заряду электроны притягиваются и образуют связанное состояние в виде новых квантовых частиц очень маленьких, комптоновских размеров. Частицы вибрируют с ленгмюровской хромоплазменной частотой, дебаевской амплитудой и одновременно рассеиваются друг на друге. Рассеивание частиц происходит под углом, поэтому периодически возникает угловой момент и, соответственно, импульсное вращение вокруг центра рассеивания. Возникающая Центробежная сила выталкивает частицы в свободное пространство кристалла, где они сосредотачиваются, образуя зону сверхпроводимости в виде канала с вигнеровской структурой. Если к мультиэлектронам, находящимся в таком канале, приложить электрическое поле, то они обеспечивают направленное движение электрического заряда без сопротивления, т.е. образуют сверхток.
Чтобы возникли мультиэлектроны, нужны специальные условия. Например, можно сделать проводник в виде слоев металла и изолятора. Тогда такой проводник становится сверхпроводником без охлаждения.
КРИТЕРИЙ СВЕРХПРОВОДИМОСТИ
_ Энергия связи мульчастицы (me) определяется балансом сил отталкивающих (кулоновского, центробежного) и притягивающего (цветового), потенциалов. Особенности механизма образования её таковы, что центробежный и цветовой короткодействующий потенциалы постоянны, а возникновение связанного состояния зависит только от величины дальнодействующего эффективного кулоновского заряда электронов.
_ Максимальное значение этого заряда, при котором еще наблюдается связанное состояние частиц, определяется из указанного баланса и равно q(me)= 1,41е, что меньше 2е. Следовательно, два электрона с общим зарядом 2е в обычных условиях никогда не образуют связанную куперовскую пару. Чтобы такая пара образовалась, необходимо экранирование заряда 2е положительным внешним зарядом, например, зарядом ионов, находящихся в узлах кристаллической решетки (применительно к интерфейсу Cu -O).
_ Установленное критическое значение эффективного заряда q(me) < 1,41е является первым условием критерия сверхпроводимости.
_ Вторым условием этого критерия является значение расстояния (d = d(кр)) между me, в вигнеровской структуре сверхпроводящего канала. Оно должно быть таким, чтобы вигнеровские орбитали перекрывались и обеспечивалась телепортация заряда от частицы к частице. Так как, размер d(кр) связан с постоянной кристаллической решетки (а), то он может быть без труда рассчитан или измерен.
_ Указанные два условия совместно образуют критерий сверхпроводимости.
_ Величина q(me)= 1,41е соответствует и численно равна значению критерия каппа(1/k) в известной теории сверхпроводимости Гинзбурга-Ландау (ГЛ). Это не случайно, так как глубину проникновения магнитного потока и размер зоны когерентности, используемые в ГЛ, можно интерпретировать как длину волны ленгмюровских колебаний и обратную величину волнового вектора me, соответственно.
_ Следовательно, известная теория ГЛ является частным случаем обобщающей мультиэлектронной теории.
_ Разработанный критерий сверхпроводимости справедлив не только для сверхпроводников с кристаллической структурой. Он может быть применен для сверхпроводящих аморфных полимерных пленок и вакуумных прослоек, в которых электрон-фононное взаимодействие заведомо отсутствует.
НОВЫЕ ЗАРУБЕЖНЫЕ ПОДТВЕРЖДЕНИЯ МЕТОДА
_ Профессор Йохан Ф. Принс предоставил авторам сведения о разработке комнатнотемпературного сверхпроводника на допированных алмазах. Sage Wise 66 (Pty) Ltd. Trading as CATHODIXX Почтовый ящик 1537, Cresta 2118, Йоханнесбург, Южная Африка веб-сайт: www.cathodixx.com ( Граница раздела алмаз – вакуум: II. Экстракция электронов из n-типа алмаза: подтверждение сверхпроводимости при комнатной температуре. Johan F Prins, Отделение физики Университета Претории (Department of Physics, University of Pretoria), Pretoria 0002, Gauteng, South Africa).
_ Новые свойства электрона являются фундаментальными свойствами и проявляются не только в сверхпроводимости.
_ Доктор наук Константин Новоселов (University of Manchester) в отзыве выразил благодарность и заинтересованность. Данная разработка объяснила открытые им новые релятивистские свойства электронов в графене, что стало важным для создания корпорацией IBM уникального транзистора c рабочей частотой 100 Ггц. Dr. Kostya Novoselov School of Physics & Astronomy Schuster Building University of Manchester Oxford Road Manchester, M13 9PL, UK www.kostya.graphene.org
_ Константин Новоселов стал Нобелевским лауреатом по физике 2010. На данном сайте имеется видеозапись выступления Константина Новоселова, где он рассказывает о своих достижениях, новом квантовом числе электрона и его обнаружении в графене.
_ Экспериментальное обнаружение мультичастицы в графене (плазмарона), выполнено в работе Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald AH, Rotenberg E. Observation of plasmarons in quasi-freestanding doped graphene. Science. 2010 May 21;328(5981):999-1002. Advanced Light Source (ALS), E. O. Lawrence Berkeley Laboratory, MS6-2100, Berkeley, CA 94720, USA.
НОВЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ АВТОРОВ
В России Сверхпроводник при комнатной температуре создан физиком В.Л. Деруновым.
_ В экспериментах применена усовершенствованная методика Айвара Живера (Нобелевский лауреат по физике (1973). С помощью нанотехнологий была синтезирована наногетероструктура диэлектрик-металл-диэлектрик, в которой создали специальные условия для возникновения мультичастиц. В результате получили металл, сверхпроводящий устойчиво в диапазоне температур 77-620 К. Для изучения и демонстрации свойств полученного сверхпроводника при комнатной температуре (293 К) на основе этих наногетероструктур были изготовлены образцы с контактами Джозефсона. Такие структуры, как известно, являются общепризнанным мировым эталоном для установления эффекта сверхпроводимости в тонких пленках толщиной от 5 до 30 нм.
_ Особое внимание в экспериментах КТСП было уделено погрешностям, связанным с возможными неконтролируемыми как поверхностными, так и внутренними структурными изменениями в образцах, при их изготовлении. Эти погрешности могли бы приводить к резким изменениям электропроводимости (закоротки) и неправильной идентификации КТСП. Поэтому для проверки и устранения указанных возмущений, методика тестовых низкофоновых измерений КТСП носила комплексный характер, с одновременной идентификацией следующих эффектов в основных и контрольных образцах:
_ – двухчастичного туннелирования при разных температурах образцов с определением критического тока;
_ – Джозефсона на переменном токе;
_ – Джозефсона на постоянном токе;
_ – поглощения СВЧ излучения;
_ – влияние магнитного поля на квантование тока в образцах и идентификация их диамагнетизма;
_ – наблюдение и регистрация структуры сверхпроводящих каналов.
_ Измерения электрических характеристик ВАХ выполнялись на стандартных характериографах, имеющих метрологическую сертификацию. Расчеты проводились с погрешностью не более 0,02% .
_ Комплексные электрические и магнитные измерения образцов подтвердили наличие в них диамагнитной проницаемости, равной -0,06, что характерно для сверхпроводимости при комнатной температуре (КТСП).
_ Экспериментальные результаты по КТСП в 2010 г. прошли положительную независимую проверку в Англии (Кембридж). Получено предложение о сотрудничестве, которое было принято специалистами НИИЭТ(Воронеж)
-
Polychemist
- Сообщения: 9726
- Зарегистрирован: Вт дек 21, 2004 11:42 am
Re: Свойства Мультиэлектрона
И снова здрасьте! Итак, за прошедшие 2+ года хоть что-то из своих результатов по мультиэлектрону опубликовали (в журнале с импакт-фактором хотя бы 1)? Если нет - в антихимию...
- Любитель_Манниха
- флудомастер
- Сообщения: 15138
- Зарегистрирован: Вт июл 15, 2008 11:55 pm
Re: Свойства Мультиэлектрона

Я лично правами человека накушалась досыта. Некогда и мы,и ЦРУ,и США использовали эту идею как таран для уничтожения коммунистического режима и развала СССР. Эта идея отслужила свое,и хватит врать про права человека и про правозащитников. © Новодворская
Re: Свойства Мультиэлектрона
Да чего уж там... можно сразу в антихимию
Re: Свойства Мультиэлектрона
Кстати где-то читал (возможно в здешних новостях) о метастабильной частице - аналоге гнлия из двух позитронов и двух электронов.
Уважающие себя физики и математики обходят стороной антинаучных художников рисущих молекулы и называющих себя химиками.
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей и 14 гостей